Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Autophagy ; : 1-3, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-20237401

ABSTRACT

The functions of mammalian Atg8 proteins (mATG8s) expand beyond canonical autophagy and include processes collectively referred to as Atg8ylation. Global modulation of protein synthesis under stress conditions is governed by MTOR and liquid-liquid phase separated condensates containing ribonucleoprotein particles known as stress granules (SGs). We report that lysosomal damage induces SGs acting as a hitherto unappreciated inhibitor of protein translation via EIF2A/eIF2α phosphorylation while favoring an ATF4-dependent integrated stress response. SGs are induced by lysosome-damaging agents, SARS-CoV-2 open reading frame 3a protein (ORF3a) expression, Mycobacterium tuberculosis infection, and exposure to proteopathic MAPT/tau. Proteomic studies revealed recruitment to damaged lysosomes of the core SG proteins NUFIP2 and G3BP1 along with the GABARAPs of the mATG8 family. The recruitment of these proteins is independent of SG condensates or canonical autophagy. GABARAPs interact directly with NUFIP2 and G3BP1 whereas Atg8ylation is needed for their recruitment to damaged lysosomes. At the lysosome, NUFIP2 contributes to MTOR inactivation together with LGALS8 (galectin 8) via the Ragulator-RRAGA-RRAGB complex. The separable functions of NUFIP2 and G3BP1 in SG formation vis-a-vis their role in MTOR inactivation are governed by GABARAP and Atg8ylation. Thus, cells employ membrane Atg8ylation to control and coordinate SG and MTOR responses to lysosomal damage.Abbreviations: Atg8: autophagy related 8; ATG: autophagy related; ATF4: activating transcription factor 4; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; GABARAP: GABA type A receptor-associated protein; G3BP1: G3BP stress granule assembly factor 1; LLOMe: L-leucyl-L-leucine methyl ester; LysoIP: lysosome immunopurification; mRNA: messenger ribonucleic acid; MTOR: mechanistic target of rapamycin kinase; NUFIP2: nuclear FMR1 interacting protein 2; ORF3a: open reading frame 3a protein; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SG: stress granule; TIA1: TIA1 cytotoxic granule associated RNA binding protein.

2.
Free Neuropathol ; 22021 Jan.
Article in English | MEDLINE | ID: covidwho-20241232

ABSTRACT

Despite the interruptions and restrictions to the progress of science that the COVID-19 pandemic has introduced, 2020 was marked by a number of important advances in the field of neurotrauma. Here, I will highlight what I believe are among the most important contributions. This year there were notable advances towards providing clinically useful information on neurotrauma outcome through the use of fluid biomarkers. I also introduce fascinating approaches to studying the role of microglia in nervous system repair and neuroinflammatory mechanisms leading to dysfunction through the use of colony-stimulating factor 1 receptor inhibitors, especially Plexxikon 5622 (PLX5622). Oral administration of this compound is able to deplete microglial elements and then, following withdrawal from the drug, a new population of microglia then repopulates the brain. Use of this approach in traumatic brain injury experimental models has produced important insights into the pathogenetic role of microglia in responding to this process. Important new data on the nature and distribution of tau involvement of neurons and astrocytes in cases of chronic traumatic encephalopathy (CTE) also appeared suggesting differences and similarities to Alzheimer s disease. Additionally, the use of tau-specific PET scan ligands in at-risk populations has suggested that this approach may be able to identify cases with CTE. Lastly, we note the death in the past year of a major contributor to the field of neurotrauma neuropathology, Professor J. Hume Adams.

3.
Neurotrauma Rep ; 4(1): 330-341, 2023.
Article in English | MEDLINE | ID: covidwho-2328194

ABSTRACT

Elevated levels of brain injury biomarkers have been found primarily in middle-aged or older persons experiencing moderate-to-severe COVID-19 symptoms. However, there is little research in young adults, and there is concern that COVID-19 causes brain injury even in the absence of moderate-to-severe symptoms. Therefore, the purpose of our study was to investigate whether neurofilament light (NfL), glial fibrillary acidic protein (GFAP), tau, or ubiquitin carboxyl-terminal esterase L1 (UCHL1) are elevated in the plasma of young adults with mild COVID-19 symptoms. Twelve participants diagnosed with COVID-19 had plasma collected 1, 2, 3, and 4 months after diagnosis to determine whether NfL, GFAP, tau, and UCHL1 concentrations increased over time or whether plasma concentrations were elevated compared with COVID-19-naïve participants. We also compared plasma NfL, GFAP, tau, and UCHL1 concentrations between sexes. Our results showed no difference between NfL, GFAP, tau, and UCHL1 concentrations in COVID-19-naïve participants and COVID-19-positive participants at any of the four time points (p = 0.771). Within the COVID-19-positive participants, UCHL1 levels were higher at month 3 after diagnosis compared to month 1 or month 2 (p = 0.027). Between sexes, females were found to have higher UCHL1 (p = 0.003) and NfL (p = 0.037) plasma concentrations compared to males, whereas males had higher plasma tau concentrations than females (p = 0.024). Based on our data, it appears that mild COVID-19 in young adults does not increase plasma NfL, GFAP, tau, or UCHL1.

4.
Surveillance ; 49(3):133-136, 2022.
Article in English | CAB Abstracts | ID: covidwho-2316822

ABSTRACT

This annual report summarizes the results of the 2021-2022 National Fruit Fly Surveillance Programme (NFFSP) in New Zealand. The report shows that despite the challenges posed by the Covid-19 pandemic, the programme was successful in meeting its objectives. A total of 139 individual trap runs were used to service the 7878 Lynfield traps in use, with no new traps established but several relocated to improve coverage. From the 2587 trap-run submissions, a total of 8183 vials were submitted, and no exotic fruit flies were detected. Thirteen samples collected in fruit-fly traps were categorized as "specimens of interest," while 9 specimens were submitted by trappers as passive surveillance samples. All lure batches tested during the season met the required standard, and field checks were made to ensure that all lures sent to trappers had been calibrated within the last 12 months. The report concludes that the trapping network was effective in supporting New Zealand's claims of area freedom.

5.
Topics in Antiviral Medicine ; 31(2):77-78, 2023.
Article in English | EMBASE | ID: covidwho-2314271

ABSTRACT

Background: Neurocognitive symptoms are common in acute as well as convalescent (post-acute sequelae of COVID-19 [PASC]) COVID-19, but mechanisms of CNS pathogenesis are unclear. The aim of this study was to investigate cerebrospinal fluid (CSF) biomarker evidence of CNS infection, immune activation and neuronal injury in convalescent compared with acute infection. Method(s): We included 68 (35% female) patients >=18 years with CSF sampled during acute (46), 3-6 months after (22) SARS-CoV-2 infection or both (17), and 20 (70% female) healthy controls from longitudinal studies. The 22 patients sampled only at 3-6 months were recruited in a PASC protocol. CSF N-Ag was analyzed using an ultrasensitive antigen capture immunoassay platform (S-PLEX SARS-CoV-2 N Kit, Meso Scale Diagnostics, LLC. Rockville, MD). Additional analyses included CSF beta2-microglobulin (beta2M)], IFN-gamma, IL-6, TNF-alpha neurofilament light (NfL), and total and phosphorylated tau. Log-transformed CSF biomarkers were compared using ANOVA (Tukey post-hoc test). Result(s): Patients sampled during acute infection had moderate (27) or severe (19) COVID-19. In patients sampled at 3-6 months, corresponding initial severity was 10 (mild), 14 (moderate), and 15 (severe). At 3-6 months, 31/39 patients reported neurocognitive symptoms;8/17 patients also sampled during acute infection reported full recovery after 3-6 months. CSF biomarker results are shown in Figure 1. SARS-CoV-2 RNA was universally undetectable. N-Ag was detectable only during acute infection (32/35) but was undetectable in all follow up and control samples. Significantly higher CSF concentrations of beta2M (p< 0.0001), IFN-gamma (p=0.02), IL-6 (p< 0.0001) and NfL (p=0.04) were seen in acute compared to post-infection. Compared to controls, beta2M (p< .0001), IL-6 (p< 0.0001) and NfL (p=0.005) were significantly higher in acute infection. No biomarker differences were seen post-infection compared with controls. No differences were seen in CSF GFAp, t-tau or p-tau. Conclusion(s): We found no evidence of residual infection (RNA, N-Ag), inflammation (beta2M, IL-6, IFN-gamma, TNF-alpha), astrocyte activity (GFAp) or neuronal injury (NfL, tau) 3-6 months after initial COVID-19, while significantly higher concentrations of several markers were found during acute infection, suggesting that PASC may be a consequence of earlier injury rather than active CNS damage. CSF beta2M, IL-6, IFN-gamma and NfL were significantly lower after 3-6 months than during acute COVID-19 and not different from healthy controls. (Figure Presented).

6.
Cell Tissue Res ; 2022 Apr 23.
Article in English | MEDLINE | ID: covidwho-2315180

ABSTRACT

Tau is a microtubule-associated protein that plays crucial roles in physiology and pathophysiology. In the realm of dementia, tau protein misfolding is associated with a wide spectrum of clinicopathologically diverse neurodegenerative diseases, collectively known as tauopathies. As proposed by the tau strain hypothesis, the intrinsic heterogeneity of tauopathies may be explained by the existence of structurally distinct tau conformers, "strains". Tau strains can differ in their associated clinical features, neuropathological profiles, and biochemical signatures. Although prior research into infectious prion proteins offers valuable lessons for studying how a protein-only pathogen can encompass strain diversity, the underlying mechanism by which tau subtypes are generated remains poorly understood. Here we summarize recent advances in understanding different tau conformers through in vivo and in vitro experimental paradigms, and the implications of heterogeneity of pathological tau species for drug development.

7.
TrAC - Trends in Analytical Chemistry ; 162 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2293300

ABSTRACT

Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic COVID-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.Copyright © 2023 Elsevier B.V.

8.
J Alzheimers Dis Rep ; 7(1): 129-134, 2023.
Article in English | MEDLINE | ID: covidwho-2268166

ABSTRACT

Recent studies have speculated a link between Creutzfeldt-Jakob disease (CJD) and COVID-19, following the description of CJD cases after COVID-19 infection. We report the case of a 71-year-old female patient who developed neuropsychiatric and neurological symptoms after COVID-19 infection and was later diagnosed with CJD. Cerebrospinal fluid (CSF) total tau levels were slightly increased. She resulted prion protein gene (PRNP) M129V heterozygous. We aim to emphasize the role of the polymorphism at codon 129 of PRNP gene on the clinical phenotype and duration of CJD, and the CSF total tau levels that likely correlate with the rate of disease progression.

9.
Cureus ; 15(3): e35745, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2275868

ABSTRACT

There was tremendous increase in the number of cases of mucormycosis among patients affected by coronavirus disease 2019 (COVID-19) during the second wave of pandemic in South Asian countries. This invasive fungal infection primarily affects paranasal sinuses and can have orbito-facial and intracranial extension. We are presenting the radiological findings of invasive mucormycosis with pathological and clinical outcome correlation. It is important for radiologists to have the knowledge of various presentations of this opportunistic infection for early diagnosis and helping clinicians in planning the appropriate line of management. The study also emphasizes on the correlation between the extent of involvement with clinical outcome and we proposed a magnetic resonance imaging (MRI) based scoring system to standardize and prognosticate the patients affected with mucormycosis. MATERIALS AND METHODS: We utilized GE 1.5 tesla, 16-channeled MRI machine for scanning the clinically suspected mucormycosis patients and did plain and contrast study of the paranasal sinuses, orbito-facial study and included brain as and when required. Images were acquired in axial, coronal, and sagittal planes using T1, T2, and fat-saturated short tau inversion recovery sequences (STIR), fat-saturated contrast sequences for better evaluation of the extent of the disease. Diffusion-weighted sequence was also acquired to detect ischemic changes in optic nerve or brain parenchyma. Contrast study was used to detect any major vessel occlusion or cavernous sinus thrombosis in the study population. RESULTS: Total number of cases (n) included in the study were 32. The mean age group was 41-50 years with the median age was 47 years. Out of 32 cases (n=32), in 16 cases (50%) the disease was limited only to the paranasal sinuses and in remaining 16 (50%) cases, disease has spread to other regions such as orbits, facial soft tissues, optic nerve, and brain parenchyma. All the 18 cases with Mild score (MRI ROCM score 1-3) survived and all those with severe score (2 cases) (MRI ROCM score 7-10) did not survive. CONCLUSION: During the second wave of COVID-19 pandemic, we observed a significant rise in acute invasive mucormycosis infection primarily involving the paranasal sinuses and spread to orbito-facial, cerebral parenchyma causing related complications and hence increased morbidity and death. Radiologically, using MRI, it was effectively possible to detect early extrasinonasal spread and other fatal complications thereby guiding the physicians and surgeons in the proper early aggressive management of the disease. Here, we have described the radiological characteristics of paranasal sinus mucormycosis and its spread to other regions. We also proposed an MRI-based Scoring System for standardized assessment of the disease severity. We observed in our study that the extent of disease on MRI is directly correlating with mortality.

10.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1583-1589, 2023 07.
Article in English | MEDLINE | ID: covidwho-2240675

ABSTRACT

Long COVID is an emerging problem in the current health care scenario. It is a syndrome with common symptoms of shortness of breath, fatigue, cognitive dysfunction, and other conditions that have a high impact on daily life. They are fluctuating or relapsing states that occur in patients with a history of SARS-CoV-2 infection for at least 2 months. They are usually conditions that at 3 months after onset cannot be explained by an alternative diagnosis. Currently very little is known about this syndrome. A thorough review of the literature highlights that the cause is attributable to deposits of tau protein. Massive phosphorylation of tau protein in response to SARS-CoV-2 infection occurred in brain samples from autopsies of people previously affected with COVID-19. The neurological disorders resulting from this clinical condition are termed tauopathies and can give different pathological symptoms depending on the involved anatomical region of the brain. Peripheral small-fiber neuropathies are also evident among patients with Long COVID leading to fatigue, which is the main symptom of this syndrome. Certainly more research studies could confirm the association between tau protein and Long COVID by defining the main role of tau protein as a biomarker for the diagnosis of this syndrome that is widespread in the post-pandemic period.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , tau Proteins , Pandemics , SARS-CoV-2 , Fatigue
11.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225332

ABSTRACT

The levels of several glial and neuronal plasma biomarkers have been found to increase during the acute phase in COVID-19 patients with neurological symptoms. However, replications in patients with minor or non-neurological symptoms are needed to understand their potential as indicators of CNS injury or vulnerability. Plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), and total Tau (T-tau) were determined by Single molecule array (Simoa) immunoassays in 45 samples from COVID-19 patients in the acute phase of infection [moderate (n = 35), or severe (n = 10)] with minor or non-neurological symptoms; in 26 samples from fully recovered patients after ~2 months of clinical follow-up [moderate (n = 23), or severe (n = 3)]; and in 14 non-infected controls. Plasma levels of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), were also determined by Western blot. Patients with COVID-19 without substantial neurological symptoms had significantly higher plasma concentrations of GFAP, a marker of astrocytic activation/injury, and of NfL and T-tau, markers of axonal damage and neuronal degeneration, compared with controls. All these biomarkers were correlated in COVID-19 patients at the acute phase. Plasma GFAP, NfL and T-tau levels were all normalized after recovery. Recovery was also observed in the return to normal values of the quotient between the ACE2 fragment and circulating full-length species, following the change noticed in the acute phase of infection. None of these biomarkers displayed differences in plasma samples at the acute phase or recovery when the COVID-19 subjects were sub-grouped according to occurrence of minor symptoms at re-evaluation 3 months after the acute episode (so called post-COVID or "long COVID"), such as asthenia, myalgia/arthralgia, anosmia/ageusia, vision impairment, headache or memory loss. Our study demonstrated altered plasma GFAP, NfL and T-tau levels in COVID-19 patients without substantial neurological manifestation at the acute phase of the disease, providing a suitable indication of CNS vulnerability; but these biomarkers fail to predict the occurrence of delayed minor neurological symptoms.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2 , Neurons/metabolism , Neurofilament Proteins , Biomarkers/metabolism , Glial Fibrillary Acidic Protein/metabolism
12.
Precision and Future Medicine ; 6(4):193-208, 2022.
Article in English | Web of Science | ID: covidwho-2217951

ABSTRACT

Methylene blue (MB) is a well-known pharmaceutical ingredient that is thought to have a multi-targeted therapeutic effect as an anti-malarial and neuroprotective agent and has recently been identified as a treatment for coronavirus disease 2019 (COVID-19). In this review, we present an overview of relevant clinical trials, including ongoing trials, on the therapeutic uses of MB. A search for clinical trials on clinicaltrials.gov was performed using the terms "methylene blue" and "methylthionine chloride." This review focuses on clinical trials of MB-based therapies applied to brain diseases, cancer imaging and diagnosis, infectious diseases such as malaria or COVID-19, and cardiovascular diseases. Nanoparticle-based delivery techniques have also been briefly discussed in addition to common delivery methods.

13.
HIV Nursing ; 23(1):180-185, 2023.
Article in English | CINAHL | ID: covidwho-2205825

ABSTRACT

The study aimed to determine the levels of Tau, amyloid beta, dynorphin, and number of biochemical variables in men with COVID-19. The study groups included 30 men with COVID-19, 30 men who recovered from COVID -19, and 30 healthy men as a control group. Protein and biochemical assays include: tau, amyloid beta, dynorphin, zinc, triglycerides, HDL-C, VLDL-C and cholesterol. The results were a significant increase (P 0.05) in the levels of amyloid beta, dynorphin, HDL-C, cholesterol and LDL-C in patients. Those infected with COVID-19 compared to the control group, while in the recovery group, amyloid beta was low compared to the control group, while zinc and lipid profile were high in the recovered. While tau protein, zinc, triglycerides and VLDL-C showed a significant decrease at (P< 0.05) in the affected men group compared to the control group.

14.
HIV Nursing ; 23(1):180-185, 2023.
Article in English | Scopus | ID: covidwho-2205824

ABSTRACT

The study aimed to determine the levels of Tau,amyloid beta, dynorphin, and number of biochemical variables in men with COVID-19. The study groups included 30 men with COVID-19, 30 men who recovered from COVID -19, and 30 healthy men as a control group. Protein and biochemical assays include: Tau, amyloid beta, dynorphin, zinc, triglycerides, HDL-C, VLDL-C and cholesterol. The results were a significant increase (P 0.05) in the levels of amyloid beta, dynorphin, HDL-C, cholesterol and LDL-C in patients. Those infected with COVID-19 compared to the control group, while in the recovery group, amyloid beta was low compared to the control group, while zinc and lipid profile were high in the recovered. While tau protein, zinc, triglycerides and VLDL-C showed a significant decrease at (P< 0.05) in the affected men group compared to the control group. © 2023, ResearchTrentz Academy Publishing Education Services. All rights reserved.

15.
Alzheimers Dement ; 18(11): 2167-2175, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2172368

ABSTRACT

INTRODUCTION: Several investigations have argued for a strong relationship between neuroinflammation and amyloid metabolism but it is still unclear whether inflammation exerts a pro-amyloidogenic effect, amplifies the neurotoxic effect of amyloid, or is protective. METHODS: Forty-two patients with acute encephalitis (ENC) and 18 controls underwent an extended cerebrospinal fluid (CSF) panel of inflammatory, amyloid (Aß40, 42, and 38, sAPP-α, sAPP-ß), glial, and neuronal biomarkers. Linear and non-linear correlations between CSF biomarkers were evaluated studying conditional independence relationships. RESULTS: CSF levels of inflammatory cytokines and neuronal/glial markers were higher in ENC compared to controls, whereas the levels of amyloid-related markers did not differ. Inflammatory markers were not associated with amyloid markers but exhibited a correlation with glial and neuronal markers in conditional independence analysis. DISCUSSION: By an extensive CSF biomarkers analysis, this study showed that an acute neuroinflammation state, which is associated with glial activation and neuronal damage, does not influence amyloid homeostasis.


Subject(s)
Alzheimer Disease , Amyloidosis , Encephalitis , Humans , Amyloid beta-Peptides/metabolism , tau Proteins/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Neuroinflammatory Diseases , Biomarkers/cerebrospinal fluid , Amyloidogenic Proteins , Peptide Fragments/cerebrospinal fluid
16.
CNS Neurol Disord Drug Targets ; 2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2197838

ABSTRACT

COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensin-converting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer's disease (EOAD). Despite this data, Alzheimer's disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.

17.
Pulm Circ ; 13(1): e12179, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2173426

ABSTRACT

We evaluated pressure-based right ventricular ejection fraction (RVEF) and diastolic isovolumetric relaxation time constant (Tau) from continuously (up to 30 days) invasive measured right ventricular pressures in mechanically ventilated patients with severe COVID-19 acute respiratory distress syndrome (ARDS). We retrospectively calculated beat-to-beat ejection fraction from right ventricular pressures and dp/dt maximum and minimum in 39 patients treated between October 1st, 2020 and June 30th, 2021. After performing a stepwise logistic regression with survival as a dependent variable, we divided the patients into survivors and nonsurvivors based on their 60-day mortality. Independent outcome variables were the values of RVEF and Tau over time after insertion of the right ventricular probe along with right ventricular systolic and diastolic pressures (RVSP) and the estimated pulmonary artery diastolic pressure (ePAD). RVEF increased significantly over time in the survivors (estimate: 0.354; 95% confidence interval, CI: 0.18-0.53; p < 0.001) but remained unchanged in the nonsurvivors. Tau increased significantly in the nonsurvivors (estimate: 0.001; 95% CI: 0.0004-0.0018; p < 0.002) but not in the survivors. On the last measurement day, RVSP and ePAD were significantly lower while RVEF was significantly higher in the survivors compared to the nonsurvivors. In COVID-19 ARDS patient's, calculation of beat-to-beat RVEF and Tau from continuously invasive measured right ventricular pressures seems to unravel contrary trends in RVEF with an increase in the surviving and a decrease in the nonsurviving patients. Tau remained unchanged in the surviving but increased in the nonsurviving patients over time.

18.
International Journal of Nutrition, Pharmacology, Neurological Diseases ; 12(3):99-104, 2022.
Article in English | EMBASE | ID: covidwho-2144132

ABSTRACT

Background: The universal risk to mankind, coronavirus disease 2019 (COVID-19), shares etiological cofactors with a variety of diseases, including anemic chronic kidney disease patients (CKD) with cognitive dysfunction like Alzheimer disease (AD). Understanding the shared links between COVID-19 and CKD, as well as cognitive impairment such as AD, might aid in designing therapeutic ways to combat both. Given the need of developing COVID-19 medicine, the connection and symptoms of CKD with cognitive impairment have been reviewed here, with a focus on memory and learning disturbance. Objective(s): COVID-19 and CKD with cognitive dysfunction share angiotensin-converting enzyme 2 receptors, and AD indicators include amyloid, tau protein, and glycogen synthase kinase-3beta. Anemia in patients with CKD and pulmonary fibrosis is frequently treated with recombinant human erythropoietin (rHuEPO). Through nitric oxide stimulation, neuroprotection, and various organ hypoxias, rHuEPO promotes red blood cells (RBC) growth while also assisting oxygen delivery. Results and Conclusion(s): In COVID-19, rHuEPO may be advantageous. The common etiological variables and manifestations outlined in this review could aid in the development of therapeutic options for COVID-19 and CKD with cognitive impairment, such as AD, and so help to eliminate the ongoing universal risk. Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

19.
Brain Sci ; 12(8)2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-2023164

ABSTRACT

Human herpesviruses (HHVs) have been implicated as possible risk factors in Alzheimer's disease (AD) pathogenesis. Persistent lifelong HHVs infections may directly or indirectly contribute to the generation of AD hallmarks: amyloid beta (Aß) plaques, neurofibrillary tangles composed of hyperphosphorylated tau proteins, and synaptic loss. The present review focuses on summarizing current knowledge on the molecular mechanistic links between HHVs and AD that include processes involved in Aß accumulation, tau protein hyperphosphorylation, autophagy, oxidative stress, and neuroinflammation. A PubMed search was performed to collect all the available research data regarding the above mentioned mechanistic links between HHVs and AD pathology. The vast majority of research articles referred to the different pathways exploited by Herpes Simplex Virus 1 that could lead to AD pathology, while a few studies highlighted the emerging role of HHV 6, cytomegalovirus, and Epstein-Barr Virus. The elucidation of such potential links may guide the development of novel diagnostics and therapeutics to counter this devastating neurological disorder that until now remains incurable.

20.
Biosensors (Basel) ; 12(8)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2023152

ABSTRACT

Alzheimer's disease (AD) is a long-term neurodegenerative disease that poses a serious threat to human life and health. It is very important to develop a portable quantitative device for AD diagnosis and personal healthcare. Herein, we develop a portable electrochemical sensing platform for the point-of-care detection of AD biomarkers in the blood. Such a portable platform integrates nanoAu-modified vertical graphene (VG@Au) into a working electrode, which can significantly improve sensitivity and reduce detection limit due to the large specific surface, excellent electrical conductivity, high stability, and good biocompatibility. The tau protein, as an important factor in the course of AD, is selected as a key AD biomarker. The results show that the linear range of this sensing platform is 0.1 pg/mL to 1 ng/mL, with a detection limit of 0.034 pg/mL (S/N = 3), indicating that this portable sensing platform meets the demand for the detection of the tau protein in the blood. This work offers great potential for AD diagnosis and personal healthcare.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Graphite , Neurodegenerative Diseases , Alzheimer Disease/diagnosis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Gold , Humans , Limit of Detection , Point-of-Care Testing , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL